
Self-Reconfigurable Robots Topodynamic
Samir Saidani

Laboratoire GREYC
Université de Caen
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Abstract— Modules connected to each other form a network.
So, a modular robot is a module network. In the case of
reconfigurable robots, the topology of this network evolves. We
propose to ground the study of self-reconfigurable robots in
a framework inspired by graph theory and cellular automata.
We separate topological aspects from metrical ones, by defining
the notion of graph topodynamic, and we provide a distributed
algorithm which transforms a quadruped robot into a chain.

I. INTRODUCTION

How to control the module network of a self-reconfigurable
robot ? How to design a single unit so that a self-reconfigurable
robot converges to the required shape ?

We are especially interested in distributed reconfiguration
algorithm not requiring the exact description of the target
shape. Thus Bojinov et al. (2000) [1], [2] proposed biologically
inspired control algorithms for chain robots, using growth,
seeds and scents concepts to make the target shape emerge
from local rules. Another approach designed by Butler et al.
(2003) [3] [4] is based on architecture-independent locomotion
algorithms for lattice robots, inspired by the cellular automata
model. Abrams and Ghrist (2003) [5] considered geometrical
properties on a shape configuration space adapted to paral-
lelization.

The difficulty to find a mathematical framework and general
method able to address the shape controlling problem is due in
our opinion to the metrical, topological and distributed nature
of a self-reconfigurable robot.

For instance, two modules can be near from each other, but
not connected, and models based on a 2D or 3D array repre-
sentation are not always accurate. How to distinguish neighbor
connected modules from neighbor disconnected modules ? We
propose in the first stage of the modular robots modelling to
separate the topological aspect from the metrical one, and to
study how we can express the topological nature of a self-
reconfigurable robot, considered as more fundamental than its
metrical aspect. Indeed, if a reconfiguration is impossible in
a topological manner, then it will be impossible in a metrical
way ; the opposite is false.

Modular robots are modules networks , and networks are
usually modeled by graphs, ideal to stress the relation between
entities. We can for example express the modules connectivity
by bounding the degrees of a graph, unidirectional and bidirec-
tional connections by directed or undirected edges... However,
the reconfiguration of a modular robot implies the evolution

of the modules network topology, and thus of its underlying
graph.

Modelling the evolution of a network topology is quite
hard to capture in graph theoretic model. The fundamental
work on random graphs, by Erdös and Rény [6] was the very
first attempt to add dynamic in a graph. Recently, interest
has grown among graph theoricists in dynamic graphs, and
especially in dynamic algorithms able to incrementally update
a solution on a graph while the graph changes. To represent
a dynamic graph, Harary (1997) [7] proposed dynamic graph
models based on logic programming and the study of the se-
quence of static graphs. Ferreira (2002) [8] recently proposed
a model called evolving graph, whose definition is based upon
an ordered sequence of subgraphs of a given digraph. But this
given digraph induces an a priori knowledge on the dynamic
process.

Moreover, we would like the graph topology to evolve
in a decentralized way with local and simple rules : each
module has a local knowledge on its environment and a
limited power for computation. Cellular automata are well
known for their ability to express complex dynamics from
the local knowledge of the cells. The underlying lattice of a
cellular automata is usually static, but Ilachinski and Halpern
(1997) [9] developped a cellular automata model in which
the underlying d-dimensional array evolves according to link
transition rules. Unfortunately, this model is expressed in the
metric space Zd and link transition rules depend on the states
of cells neighborhood.

To combine graph theory expressivity with richness of
cellular automata dynamic, the first section defines the notion
of graph topodynamic, with the assumption that a module
only knows about its neighborhood and the neighbors of its
neighborhood.

The second part is devoted to the construction of a topo-
dynamic which converges to a target topology by emergent
calculus : the modules do not know the goal configuration and
the final configuration emerges from the modules collective
behavior.

By this way, we hope to transform the shape control-
ling problem into the study of graph topodynamic, namely
the discovering of topodynamics converging towards a given
topology.



II. GRAPH TOPODYNAMIC

We first remind basic notions in graph theory and then
state a topological definition of a graph independent of its
embedment in metric space. We finally define the notion of
graph topodynamic.

A. Preliminaries

Definition 2.1 (Graph): A graph is a pair (V,E) with V a
finite set of vertices and E a set of edges, finite subset of
V × V .

A graph is undirected if the relation defined on V is
symmetric, otherwise the graph is directed, and edges have
a direction. The order of a graph is its number of vertices
|V |. Two vertices are said to be adjacent if they are joined by
an edge.

The neighborhood of a vertex v is the set τ(v) of vertices
x such that x is adjacent to v. If there is no ambiguity with
the context, we note a neighborhood τ(v) = {x, y, . . . , z} by
xy . . . z. The out-neighborhood of a vertex v is the set τ+(v)
of vertices x outgoing from v. The in-neighborhood of a
vertex v is the set τ−(v) of vertices x pointing to v. We see
that an undirected graph (resp. directed graph) is completely
describe by giving the set of its vertices and a neighborhood
(resp. in-neighborhood or out-neighborhood) on each vertex.
The degree (resp. indegree, outdegree) of a vertex is the
number of its neighbors (resp. in-neighbors, out-neighbors).
The degree of a graph, noted d◦(G) is the maximum degree
of a vertex. Note that for an undirected graph, each edge v, w
could be considered as a double arrow (v, w) and (w, v), so
the in-neighborhood is equal to the out-neighborhood of a
vertex.

Definition 2.2 (Graph Topology): The topology τ (resp.
τ+, τ−) of a graph G is the family of its neighborhoods
(τv)v∈V (resp. out-neighborhoods (τ+

v )v∈V , in-neighborhoods
(τ−v )v∈V ).

Example 2.3: Let G be the following graph :
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The neighborhood τ(a) of a is {b, c} or in short bc. We have
too : τ+(a) = bc,τ−(a) = b,τ(c) = ade, τ+(c) = d,τ−(c) =
ae, d◦(G) = 3 because |τ(c)| = 3

B. Topodynamic

Let us now define the notion of a sequence of graphs.
Definition 2.4 (Sequence of Graphs): A sequence of

graphs is a family of graph (Gi)i∈N with Gi = (Vi, τi).
For simplicity, we will consider from now only sequence of

graphs with constant order, i.e ∀i ∈ N, Vi = V0.

What is the difference between a sequence of graphs and a
dynamic graph ? Usually, a dynamic system is characterized
by its transition function : we can compute the state of
the system from an initial state and past states. Basically, a
sequence of graphs can not change its topology on its own : the
evolution of the topology is predetermined by giving a family
τi of topologies. However, we can associate a transformation
function to a sequence of graphs. So we will call dynamic
graph a sequence of graphs consisting of an initial graph and
a function which transforms its topology to a new topology.

Definition 2.5 (dynamic graph - global transition function):
A dynamic graph is the pair (G0,∆), such that G0 = (V, τ0)
is an initial graph and ∆ : (V 7→ 2V ) 7→ (V 7→ 2V ) define a
topodynamic by mapping a topology on V to a new topology.

Nevertheless, we would like to have dynamic graph vertices
more active than in a sequence of graphs, namely able to
change their own degrees by accepting, keeping or removing
its adjacent edges, according to local transition rules inducing
the graph topodynamic. Local transition rules is widely used
in cellular automata area : the state of an automaton depends
on its own state and the state of its neighbors. Local transition
function, simultaneously applied to each cell, determine the
dynamic of a cellular automata. Although cellular automata
are usually defined on regular lattices, this definition can be
extended to more complicated graph : graph of automata (con-
nected bounded degree graph), first introduced by Rosenstiehl
(1966) [10]. In a graph of automata, each node have a state
and the next state depends of its current state and the state of
its neighbors.

Definition 2.6 (graph of automata): A graph of automata is
a triplet (S, G, δ) where S is a finite set called set of states,
G = (V, τ) is a graph, δ : S × {(S ∪ ε)d◦(G)�σ} 7→ S is the
transition function where ε is a special element used when the
vertex has less than the maximum degree of the graph. σ is the
equivalence relation defined on the cartesian product Sn with
xσy if x is a permutation of y. So Sn�σ is the unordered set
Sn.

In this definition of graph automata , the underlying graph
is static. We study here the possibility to have an evolving
underlying graph : this evolution may be controlled by active
vertices, kind of automata able to connect and disconnect
their own edges in the network. We give to the automata the
control of its underlying graph by slightly modifying the graph
automata definition as following.

Definition 2.7 (dynamic graph - local transition function):
A dynamic graph is the pair (G0, δ) where G = (V, τ0) define
an initial graph, and δ : S × {(S ∪ ε)|V |−1�σ} 7→ S with
S = 2V the set of states, define the local transition function,
where ε is a special element used when the vertex has less
than |V | − 1 (the maximal degree of the dynamic graph).

A node chooses its next neighborhood according to its
current neighborhood and the current neighborhood of its
neighbors. If we replace “neighborhood” in the precedent
sentence by the word “state”, we retrieve the usual definition
of the evolution of a cell in cellular automata.



In order to deal with the different neighbors of a given
neighborhood, we build from the application τ an application
~τ which for each vertex gives its neighbors vector : ~τ :
{v} 7→ ({1, . . . , |τ(v)|} 7→ V ) such that

⋃|τ(v)|
i=1 ~τ(v)(i) =

τ(v) where v ∈ V
If a vertex v has a degree n, its next state τi+1(v), namely

its next neighborhood, is given by :

τi+1(v) = δ(τi(v), τi(~τi(v)(1)), . . . , τi(~τ(v)(n)), ε, . . . , ε)

We define now the fixpoint topology for a given topo-
dynamic as a graph topology unchanged by applying this
topodynamic.

Definition 2.8 (fixpoint topology): A fixpoint topology τ
for the topodynamic ∆ is a topology such that ∆(τ) = τ

A question we may ask is for which topodynamic a given
topology is the fixpoint.

III. FIXPOINT TOPOLOGY

In this section, we show how to apply the graph topo-
dynamic model through the example of a tree-to-chain re-
configuration. We provide a distributed algorithm defining a
topodynamic on an initial tree, converging to a chain, the
fixpoint topology of this dynamic.

Fig. 1. Tree to chain reconfiguration

Let us imagine that we want reconfigure a quadruped robot
(as the conro [11] or polybot robot [12]), represented to the
left of the figure 1, to a caterpillar robot. Each node represents
a module, and directed edges the connection between modules.

There are several principles behind a topodynamic design :
• RECONFIGURATION : the reconfiguration is done thanks

to the knowledge of a node and of the neighborhood of
its neighbors. It can disconnect from its current nodes to
reconnect itself to a neighbor of its neighbors.
• LOCAL KNOWLEDGE : A node knows its own indegree
and outdegree (computed from its knowledge of its in
and out-neighbors) and the in and outdegrees of its direct
neighbors (computed from its knowledge of in and out-
neighbors of its neighbors).
• OUTGOING CONNECTION CONTROL : A node only

controls its outgoing connections, it cannot decide to

disconnect itself from an ingoing connection but can
connect to or disconnect from its outgoing connections.
• DECISION PROCESS : To take a decision, a node may
exploit the dissymmetry of its neighborhood. For that
reason, we avoid the cycles in a graph because of the
possibility to lose graph connexity.
• CONNEXITY : A node must never be isolated during the
reconfiguration process.
• UNIFORMITY : All nodes have the same set of rules.
• SYNCHRONICITY : The computation and reconfigura-
tion are totally synchronous among the nodes.

Let us now consider the dynamic graph D defined as
following :
• G0 is the tree as defined in the figure 1,
• the topodynamic is defined by the distributed algorithm
below.

TREE-TO-CHAIN(v)
1 switch
2 case d+(v) ≥ 3 :
3 if DISCONNECTNODEOFOUTDEGREE(1)
4 then
5 DISCONNECTNODEOFOUTDEGREE(2)
6 return
7 case d−(v) = 0 & d+(v) = 1 & |τ+(τ+(v)| ≥ 2 :
8 if d(τ+(v)) ≥ 2
9 then

10 CONNECTTOOUTNGBOFMYNGB
11 return
12 case 0 ≤ d−(v) ≤ 1 & |τ(v)| = 2 :
13 w ← τ+(v)	 τ−(v)
14 for u ∈ w
15 do
16 if d+(u) ≥ 2
17 then
18 CONNECTTOOUTNGBOFNGB(u)
19 return
20 case 1 ≤ d−(v) ≤ 2 & d+(v) = 1 & |τ(v)| = 2 :
21 CONNECTTONODEOFINDEGREE(0)
22 return
23 case d(v) ≥ d+(v) + 2 :
24 CONNECTTOONEOFMYSTRICTINNGB
25 return

The function disconnectNodeOfOutDegree(n) tries
to disconnect the current node from a neighbor of
outdegree n and return true. If it fails, return false.
The function connectToNgbOfMyNgb connect the cur-
rent node to somekindof neighbor of its neighbor. The
function connectToNgbOfNgb(v) connect the current
node to somekindof neighbor of its neighbor v. The
function connectToNodeOfInDegree(n) connect the
current node to a node of indegree n. The function
connectToOneOfMyStrictInNgb connect the current
node to one of its strict in-neighbors, namely in-neighbors
which are not out-neighbors.



We can now compute the graph topodynamic. The cases
below are encountered during the reconfiguration process. To
trace the computation, we distinguish the current node (in
white) from the other nodes (in black). For each node, the
first indice gives the indegree of the current node, and the
second indice the outdegree. If there is only one indice, this is
the degree of the node. We call a connection closed if the edge
is bidirectional, and we call second neighbors the neighbors
of a node neighbors.
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(a) Disconnect node of outdegree 2
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(b) Disconnect node of outdegree 1

Fig. 2. Outgoing connection disconnection

Lines 2-6, figure 2 : if a node is connected to too much
nodes (d+(v) ≥ 3), then it tries to disconnect first to node of
outdegree 1, then to disconnect to node of outdegree 2.
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Fig. 3. Reconfiguration

Lines 7-11, figure 3 : If the indegree of a node is zero and
the outdegree is one, then this node is necessarily the extremity
of a chain. If the outdegree of its unique neighbor is two, then

the node tries to connect to a random second out-neighbors.
In fact, the node tries to find the extremity of a chain.

◦1,2

��

oo // •

• • oo ////oo •

◦1,2

!!B
BB

BB
BB

B
oo // •

• • oo ////oo •

��

(a) One closed connection for the current node
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(b) No closed connection for the current node

Fig. 4. Another reconfiguration

Lines 12-19, figure 4 : This node is necessarily between two
nodes, it will try to find the extremity of a chain by exploring
its second neighbors.

Lines 18-20, figure 5 : if a node is inside a chain and its
indegree is one, then it will close the connection with its in-
neighbor.

Lines 23-25, figure 6 : A node will try to have only one
unclosed connection. We verify that no rules apply on a chain
graph, therefore the chain topology is a fixpoint topology for
the algorithm TREE-TO-CHAIN.

IV. CONCLUSION

This work is a proposal of a framework based on graph
topodynamic and cellular automata intended to address the
problem of controlling modules network topodynamic.

In the first part, we defined the topology of a graph and
proposed to make a distinction between sequence of graphs
and dynamic graphs: a dynamic graph is a sequence of
graphs where a local or global topodynamic determines the
topological evolution of a graph.

In the second section, we showed through an example that
a topodynamic can be defined from the local knowledge of
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Fig. 6. Only one unclosed

each vertex : we built a dynamic graph able to change its own
underlying graph according to local and simple rules.

Clearly more work needs to be done to extend this model.
First of all, a node does not have the memory of nodes
already explored during random reconnections, which leads
to a low convergence speed. Moreover, this framework is
currently unable to deal with cycles in graph : cycles are totally
symmetrical configurations and our approach is based on the
exploitation of asymmetrical local configurations. Breaking
symmetries of a cycle demands to enlarge the model by
considering dynamic graphs of automata, i.e dynamic graphs
in which each node has a state. Another way to extend this
model is to allow a node to know the neighborhood of the
neighborhood of its neighbors, hence to increase the conver-
gence speed. Notice that a reconfiguration process involving
compression, expansion and any deformation of modules is
not captured by this model : we have to add a metric distance
on the graph topology to model such transformations.
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Fig. 7. Chain topology

We hope that this work is a first stage and a basis for
a more general framework sufficiently powerful to express
any kind of reconfiguration process. We are currently working
on the proof that, given any acyclic graph, the topodynamic
described in this paper converges to a chain shape. Other useful
topodynamics remain to study : from a connexe graph to a
chain graph, from a lattice to a chain , from a chain to a
lattice, and so on. A simulation implemented in Smalltalk is
underway with a view to help us in rules discoveries involved
in the emergence of different network topologies.
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